Robots benefit from being able to classify objects they interact with or manipulate based on their material properties. This capability ensures fine manipulation of complex objects through proper grasp pose and force selection. Prior work has focused on haptic or visual processing to determine material type at grasp time. In this work, we introduce a novel parallel robot gripper design and a method for collecting spectral readings and visual images from within the gripper finger. We train a nonlinear Support Vector Machine (SVM) that can classify the material of the object about to be grasped through recursive estimation, with increasing confidence as the distance from the finger tips to the object decreases. In order to validate the hardware design and classification method, we collect samples from 16 real and fake fruit varieties (composed of polystyrene/plastic) resulting in a dataset containing spectral curves, scene images, and high-resolution texture images as the objects are grasped, lifted, and released. Our modeling method demonstrates an accuracy of 96.4% in classifying objects in a 32 class decision problem. This represents a performance improvement by 29.4% over the state of the art computer vision algorithms at distinguishing between visually similar materials. In contrast to prior work, our recursive estimation model accounts for increasing spectral signal strength and allows for decisions to be made as the gripper approaches an object. We conclude that spectroscopy is a promising sensing modality for enabling robots to not only classify grasped objects but also understand their underlying material composition.
翻译:机器人能够根据物质特性对其相互作用或操纵的物体进行分类, 从而从中得益于能够根据物质特性对其相互作用或操作的物体进行分类。 这种能力能确保通过适当的抓取姿势和武力选择对复杂的物体进行精细的操纵。 先前的工作重点是机密或视觉处理, 以便在掌握时间确定材料类型。 在这项工作中, 我们引入了一个新的平行的机器人抓抓器设计, 以及从握手手指内收集光谱读数和视觉图像的方法。 我们训练了一个非线性支持矢量机器( SVM ), 它可以通过循环估计对目标的材料进行分类, 随着从手指到对象的距离减少, 增强信心。 为了验证硬件设计和分类方法, 我们收集了16种真实和假水果品种的样本( 由聚苯乙烯/ 塑料合成), 从而形成一个包含光谱曲线、 景象图像和高分辨率纹理图像的数据集。 我们的模型方法显示, 在将对象分类为32个类的判定对象的分解度时, 只能精确到96.4 % 。 这代表着业绩的改进了29.4 % 相对于艺术基本目标的状态,, 我们的计算方法可以用来区分之前的计算结果的计算结果, 。 比较我们为我们为视觉的精确的计算结果,, 的精确的计算结果,, 比较了我们作为之前的计算结果的精确的计算结果的计算结果,,,, 的精确的精确的计算结果的计算,,, 比较了我们的计算结果, 比较了我们的视觉的计算,,,,,, 的计算结果的精确的精确的精确的计算,, 的计算结果的计算结果的计算结果的计算结果的计算方法可以区分了我们的视觉的计算结果的计算方法是,,,,,,,,,, 的计算方法可以区分了我们的精确的计算结果的比,,, 的计算方法可以区分了我们之间的比 的计算方法可以比较了我们的精确的计算方法可以比较了我们的计算方法可以比较了。