Portrait matting is an important research problem with a wide range of applications, such as video conference app, image/video editing, and post-production. The goal is to predict an alpha matte that identifies the effect of each pixel on the foreground subject. Traditional approaches and most of the existing works utilized an additional input, e.g., trimap, background image, to predict alpha matte. However, providing additional input is not always practical. Besides, models are too sensitive to these additional inputs. In this paper, we introduce an additional input-free approach to perform portrait matting using Generative Adversarial Nets (GANs). We divide the main task into two subtasks. For this, we propose a segmentation network for the person segmentation and the alpha generation network for alpha matte prediction. While the segmentation network takes an input image and produces a coarse segmentation map, the alpha generation network utilizes the same input image as well as a coarse segmentation map that is produced by the segmentation network to predict the alpha matte. Besides, we present a segmentation encoding block to downsample the coarse segmentation map and provide feature representation to the residual block. Furthermore, we propose border loss to penalize only the borders of the subject separately which is more likely to be challenging and we also adapt perceptual loss for portrait matting. To train the proposed system, we combine two different popular training datasets to improve the amount of data as well as diversity to address domain shift problems in the inference time. We tested our model on three different benchmark datasets, namely Adobe Image Matting dataset, Portrait Matting dataset, and Distinctions dataset. The proposed method outperformed the MODNet method that also takes a single input.


翻译:光线交配是一个重要的研究问题, 包括视频会议应用程序、 图像/ 视频编辑、 制作后等多种应用。 目标是预测一个 Alpha matte, 确定每个像素对前景主题的影响 。 传统的方法和大部分现有作品都使用了额外的输入, 例如 滴图、 背景图像, 来预测阿尔法面。 但是, 提供额外的输入并不总是实用的。 此外, 模型对这些额外投入过于敏感 。 在本文中, 我们引入了一种额外的不使用 Genealation Adversarial Nets (GANs) 来进行肖像化配配方的无内容化方法 。 我们将主要任务分为两个子任务 。 为此, 我们提议了一个人分解和阿尔法生成网络网络, 用于预测阿尔法 。 分解网络使用相同的输入模型以及由分解网络生成的粗略分解分解图来预测阿尔法 。 此外, 我们用一个分解法将主要任务分为两个直径的图像区域, 将数据转换为我们的数据路段 。

0
下载
关闭预览

相关内容

GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
文字描述生成视频的开源项目
CreateAMind
5+阅读 · 2017年12月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
0+阅读 · 2021年7月29日
Real-Time High-Resolution Background Matting
Arxiv
4+阅读 · 2020年12月14日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
文字描述生成视频的开源项目
CreateAMind
5+阅读 · 2017年12月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员