Generative Artificial Intelligence (AI) is enabling unprecedented automation in content creation and decision support, but it also raises novel risks. This paper presents a first-principles risk assessment framework underlying the IEEE P3396 Recommended Practice for AI Risk, Safety, Trustworthiness, and Responsibility. We distinguish between process risks (risks arising from how AI systems are built or operated) and outcome risks (risks manifest in the AI system's outputs and their real-world effects), arguing that generative AI governance should prioritize outcome risks. Central to our approach is an information-centric ontology that classifies AI-generated outputs into four fundamental categories: (1) Perception-level information, (2) Knowledge-level information, (3) Decision/Action plan information, and (4) Control tokens (access or resource directives). This classification allows systematic identification of harms and more precise attribution of responsibility to stakeholders (developers, deployers, users, regulators) based on the nature of the information produced. We illustrate how each information type entails distinct outcome risks (e.g. deception, misinformation, unsafe recommendations, security breaches) and requires tailored risk metrics and mitigations. By grounding the framework in the essence of information, human agency, and cognition, we align risk evaluation with how AI outputs influence human understanding and action. The result is a principled approach to AI risk that supports clear accountability and targeted safeguards, in contrast to broad application-based risk categorizations. We include example tables mapping information types to risks and responsibilities. This work aims to inform the IEEE P3396 Recommended Practice and broader AI governance with a rigorous, first-principles foundation for assessing generative AI risks while enabling responsible innovation.
翻译:暂无翻译