Maximum cut (MaxCut) on graphs is a classic NP-hard problem. In quantum computing, Farhi, Gutmann, and Goldstone proposed the Quantum Approximate Optimization Algorithm (QAOA) for solving the MaxCut problem. Its guarantee on cut fraction (the fraction of edges in the output cut over all edges) was mainly studied for high-girth graphs, i.e., graphs with only long cycles. On the other hand, low-girth graphs are ubiquitous in theoretical computer science, including expander graphs being outstanding examples with wide applications in theory and beyond. In this paper, we apply QAOA to MaxCut on a set of expander graphs proposed by Mohanty and O'Donnell known as additive product graphs. Additionally, we apply multi-angle QAOA (ma-QAOA) to better utilize the graph structure of additive product graphs in ansatz design. In theory, we derive an iterative formula to calculate the expected cut fraction of such graphs. This formula also extends to the quantum MaxCut problem. On the other hand, we conduct numerical experiments to compare between best-known classical local algorithms and QAOA with constant depth. Our results demonstrate that QAOA outperforms the best-known classical algorithms by 0.3% to 5.2% on several additive product graphs, while ma-QAOA further enhances this advantage by an additional 0.6% to 2.5%. In particular, we observe cases that ma-QAOA exhibits superiority over best-known classical algorithms but QAOA does not. Furthermore, we extend our experiments to planar graphs such as tiling grid graphs, where QAOA also demonstrates an advantage.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员