Parameter estimation via M- and Z-estimation is equally powerful in semiparametric models for one-dimensional functionals due to a one-to-one relation between corresponding loss and identification functions via integration and differentiation. For multivariate functionals such as multiple moments, quantiles, or the pair (Value at Risk, Expected Shortfall), this one-to-one relation fails and not every identification function possesses an antiderivative. The most important implication is an efficiency gap: The most efficient Z-estimator often outperforms the most efficient M-estimator. We theoretically establish this phenomenon for multiple quantiles at different levels and for the pair (Value at Risk, Expected Shortfall), and illustrate the gap numerically. Our results further give guidance for pseudo-efficient M-estimation for semiparametric models of the Value at Risk and Expected Shortfall.
翻译:通过 M 和 Z 估计的参数估计在一维功能的半参数模型中同样有力,因为相应的损失和通过集成和区分的识别功能之间存在一对一的关系。对于多变量功能,如多个瞬间、四分位或对等(风险价值、预期缺省),这种一对一关系失败,而不是每个识别功能都具有抗降解作用。最重要的影响是效率差距:效率最高的Z- 估计器往往优于效率最高的M- 估计器。我们理论上为不同级别和对等的多个量化器建立了这种现象(风险价值、预期缺省),并用数字来说明差距。我们的结果进一步为风险和预期缺省值的半参数模型的伪效率M估计提供了指导。