Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles. Since autonomous vehicles need to navigate in dynamically changing environments, they are expected to make accurate predictions regardless of where they are and what driving circumstances they encountered. A number of methodologies have been proposed to solve prediction problems under different traffic situations. However, these works either focus on one particular driving scenario (e.g. highway, intersection, or roundabout) or do not take sufficient environment information (e.g. road topology, traffic rules, and surrounding agents) into account. In fact, the limitation to certain scenario is mainly due to the lackness of generic representations of the environment. The insufficiency of environment information further limits the flexibility and transferability of the predictor. In this paper, we propose a scenario-transferable and interaction-aware probabilistic prediction algorithm based on semantic graph reasoning. We first introduce generic representations for both static and dynamic elements in driving environments. Then these representations are utilized to describe semantic goals for selected agents and incorporate them into spatial-temporal structures. Finally, we reason internal relations among these structured semantic representations using learning-based method and obtain prediction results. The proposed algorithm is thoroughly examined under several complicated real-world driving scenarios to demonstrate its flexibility and transferability, where the predictor can be directly used under unforeseen driving circumstances with different static and dynamic information.


翻译:对交通参与者可能的行为作出准确预测是自治车辆的基本能力。由于自治车辆需要在动态变化的环境中航行,因此预期它们会作出准确的预测,而不管它们在哪里,也不管它们遇到什么驱动环境。提出了一些方法来解决不同交通情况下的预测问题。然而,这些方法要么侧重于一种特定的驾驶情景(例如公路、十字路口或环路路路路),要么不考虑足够的环境信息(例如公路地形、交通规则和周围物剂)。事实上,对某些情景的限制主要是由于环境缺乏通用的表述。环境信息的不足进一步限制了预测者的灵活性和可转移性。在本文件中,我们根据语义图理推理,提出了一种可设想的可转移和互动的概率预测算法。我们首先对驱动环境中的静态和动态要素(例如公路地形、交通规则和周围物剂)进行一般性表述,然后将这些表述用于描述选定物剂的语义目标,并将其纳入空间时尚结构。最后,由于环境信息的缺乏,环境信息的不足,环境信息的缺乏,环境信息不足进一步限制了预测者的灵活性和可转移性。在本文中,我们提出了一种可以设想的假设式假设式假设式的内内部关系,在学习方法下可以直接地分析其变动的变式分析。在何种变式分析中可以使用各种变式的演算法之下,从而获得各种变式的变式的演算结果。根据下,在进行一系列式的演算。根据下,在不同的变式的演算法下,在进行中可以进行彻底的变式的演进的演算。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
3+阅读 · 2018年12月3日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员