When deploying person re-identification (ReID) model in safety-critical applications, it is pivotal to understanding the robustness of the model against a diverse array of image corruptions. However, current evaluations of person ReID only consider the performance on clean datasets and ignore images in various corrupted scenarios. In this work, we comprehensively establish six ReID benchmarks for learning corruption invariant representation. In the field of ReID, we are the first to conduct an exhaustive study on corruption invariant learning in single- and cross-modality datasets, including Market-1501, CUHK03, MSMT17, RegDB, SYSU-MM01. After reproducing and examining the robustness performance of 21 recent ReID methods, we have some observations: 1) transformer-based models are more robust towards corrupted images, compared with CNN-based models, 2) increasing the probability of random erasing (a commonly used augmentation method) hurts model corruption robustness, 3) cross-dataset generalization improves with corruption robustness increases. By analyzing the above observations, we propose a strong baseline on both single- and cross-modality ReID datasets which achieves improved robustness against diverse corruptions. Our codes are available on https://github.com/MinghuiChen43/CIL-ReID.
翻译:在安全关键应用中部署人员再身份(ReID)模型时,了解模型对于各种图像腐败的强度至关重要;然而,当前对人再ID的评估只考虑清洁数据集的性能,忽视各种腐败情景中的图像;在这项工作中,我们全面建立了6个ReID基准,以学习腐败的不易代表模式;在ReID领域,我们首先对单一和跨现代数据集(包括市场1501、CUHKK03、MSMMD17、ReDB、SUSU-M01)中的腐败情况进行详尽的研究,以了解该模型对多种图像腐败的强度。然而,目前对人再开发公司的评价只考虑清洁数据集的性能,而忽略各种腐败情形中的图像。在重新制作和审查最近21个ReID方法的稳度表现之后,我们有一些观察意见:(1) 与CNN的模型相比,基于变动器的模型对腐败图像更加稳健;(2) 在ReID领域,增加随机删除(常用的扩大方法)伤害模式强性强性强的概率;(3)交叉数据普及,随着腐败强度的增加增加,改进。我们通过分析上述观察,提议一个单一和跨模式的基线,在单-和跨模式/跨模式、稳健/跨模式下,在单一/跨模式下,我们现有的反腐败的反腐败/可查/可查/可查的反腐败数据中,我们的数据将可实现。