We consider signal source localization from range-difference measurements. First, we give some readily-checked conditions on measurement noises and sensor deployment to guarantee the asymptotic identifiability of the model and show the consistency and asymptotic normality of the maximum likelihood (ML) estimator. Then, we devise an estimator that owns the same asymptotic property as the ML one. Specifically, we prove that the negative log-likelihood function converges to a function, which has a unique minimum and positive-definite Hessian at the true source's position. Hence, it is promising to execute local iterations, e.g., the Gauss-Newton (GN) algorithm, following a consistent estimate. The main issue involved is obtaining a preliminary consistent estimate. To this aim, we construct a linear least-squares problem via algebraic operation and constraint relaxation and obtain a closed-form solution. We then focus on deriving and eliminating the bias of the linear least-squares estimator, which yields an asymptotically unbiased (thus consistent) estimate. Noting that the bias is a function of the noise variance, we further devise a consistent noise variance estimator which involves $3$-order polynomial rooting. Based on the preliminary consistent location estimate, we prove that a one-step GN iteration suffices to achieve the same asymptotic property as the ML estimator. Simulation results demonstrate the superiority of our proposed algorithm in the large sample case.
翻译:我们从范围差异测量中考虑信号源本地化。 首先, 我们给测量噪音和传感器部署提供一些容易检查的条件, 以保证模型的无症状识别性, 并显示最大概率( ML) 估计值的一致性和无症状常态性。 然后, 我们设计一个估算器, 其拥有与 ML 值一样的无症状属性。 具体地说, 我们证明负日志相似性功能会集中到一个函数, 该函数在真实源的位置上具有独特的最低和积极定义的 Hesssian 。 因此, 我们有望在一致的估计后执行本地迭代, 例如, Gaus- Newton (GN) 算法的一致性和无症状常性常性常性常性常性常性常性。 为了这个目的, 我们通过测算操作和约束性能放松, 并获得一个封闭式解决方案。 我们然后集中分析并消除线性最小度( 最小度) 最小度的 Helstial) 的偏差性常性定性估算值, 也就是精确性地测测算的精确性差( ) 的精确性测算基础, 的精确性偏差的精确性测值, 。