Different statistical samples (e.g., from different locations) offer populations and learning systems observations with distinct statistical properties. Samples under (1) 'Unconfounded' growth preserve systems' ability to determine the independent effects of their individual variables on any outcome-of-interest (and lead, therefore, to fair and interpretable black-box predictions). Samples under (2) 'Externally-Valid' growth preserve their ability to make predictions that generalize across out-of-sample variation. The first promotes predictions that generalize over populations, the second over their shared exogeneous factors. We illustrate these theoretic patterns in the full American census from 1840 to 1940, and samples ranging from the street-level all the way to the national. This reveals sample requirements for generalizability over space, and new connections among the Shapley value, U-Statistics (Unbiased Statistics), and Hyperbolic Geometry.


翻译:不同的统计样本(例如,不同地点的统计样本)提供具有不同统计特性的人口和学习系统观测。(1) “无根据的”增长保护系统下的样本能够确定个别变量对任何利益结果的独立影响(因此导致公平和可解释的黑盒预测 ) 。(2) “外价”增长下的样本保持了做出预测的能力,这种预测能够泛泛地反映各种外差差异。第一种样本有助于对人口进行普遍预测,第二个样本超越其共同的外差因素。我们在1840年至1940年的美国全面人口普查中展示了这些理论模式,以及从街道到全国的样本。这揭示了对空间的可概括性、以及沙普利值、U-统计(不偏差统计)和双曲线几何几何测量之间的新联系的样本要求。</s>

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员