Suppose there is a spreading process such as an infectious disease propagating on a graph. How would we reduce the number of affected nodes in the spreading process? This question appears in recent studies about implementing mobility interventions on mobility networks (Chang et al. (2021)). A practical algorithm to reduce infections on unweighted graphs is to remove edges with the highest edge centrality score (Tong et al. (2012)), which is the product of two adjacent nodes' eigenscores. However, mobility networks have weighted edges; Thus, an intervention measure would involve edge-weight reduction besides edge removal. Motivated by this example, we revisit the problem of minimizing top eigenvalue(s) on weighted graphs by decreasing edge weights up to a fixed budget. We observe that the edge centrality score of Tong et al. (2012) is equal to the gradient of the largest eigenvalue of $WW^{\top}$, where $W$ denotes the weight matrix of the graph. We then present generalized edge centrality scores as the gradient of the sum of the largest $r$ eigenvalues of $WW^{\top}$. With this generalization, we design an iterative algorithm to find the optimal edge-weight reduction to shrink the largest $r$ eigenvalues of $WW^{\top}$ under a given edge-weight reduction budget. We also extend our algorithm and its guarantee to time-varying graphs, whose weights evolve over time. We perform a detailed empirical study to validate our approach. Our algorithm significantly reduces the number of infections compared with existing methods on eleven weighted networks. Further, we illustrate several properties of our algorithm, including the benefit of choosing the rank $r$, fast convergence to global optimum, and an almost linear runtime per iteration.
翻译:假设有一个扩散过程, 比如在图表上传播传染病。 我们如何减少扩张过程中受影响的节点数量? 这个问题出现在最近关于对流动网络实施流动干预的研究中( 张等人, (2021年) 。 在未加权图表中减少感染的实际算法是去除具有最高边缘中心点分的边缘( Tong 等人, (2012年), 这是两个相邻节点的偏重值的产物。 然而, 移动网络有加权边际; 因此, 一项干预措施将涉及在扩展过程中减少超重节点。 以这个例子为动力, 我们重新审视了在加权图上最大限度地减少顶层的超重值( Chang等人等人, (2021年) 。 在未加权的图表中, 降低顶端的偏重值( Tong et al. (2012年) ) 是两个相邻节点的最大偏重点的梯度。 但是, 流动网络有加权偏重; 因此, 我们呈现超重点的中位值递增值, 最高点的中位值( 美元 美元) 相对比重) 基值 相对重 美元 的平比重 。 我们设计了一个最高级的比重的比重的比重的平比重的比重的比重值 。</s>