In this work, we use an explainable convolutional neural network (NLS-Net) to solve an inverse problem of the nonlinear Schr\"odinger equation, which is widely used in fiber-optic communications. The landscape and minimizers of the non-convex loss function of the learning problem are studied empirically. It provides a guidance for choosing hyper-parameters of the method. The estimation error of the optimal solution is discussed in terms of expressive power of the NLS-Net and data. Besides, we compare the performance of several training algorithms that are popular in deep learning. It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method. The study provides a natural framework of solving inverse problems of nonlinear partial differential equations with deep learning.
翻译:在这项工作中,我们使用可解释的进化神经网络(NLS-Net)来解决非线性Schr\'odinger等式的反问题,该等式在光纤通信中广泛使用。对学习问题非阴道损失功能的景观和最小化作用进行了经验研究。它为选择方法的超参数提供了指导。最佳解决方案的估计错误用NLS-Net的表达力和数据来讨论。此外,我们比较了在深层学习中流行的若干培训算法的性能。它表明,人们可以利用拟议方法获得对考虑参数的相对准确的估计。该研究提供了用深层学习解决非线性部分方程式的反向问题的自然框架。