Conductor moving in magnetic field is quite common in electrical equipment. The numerical simulation of such problem is vital in their design and analysis of electrical equipment. The Galerkin finite element method (GFEM) is a commonly employed simulation tool, nonetheless, due to its inherent numerical instability at higher velocities, the GFEM requires upwinding techniques to handle moving conductor problems. The Streamline Upwinding/Petrov-Galerkin (SU/PG) scheme is a widely acknowledged upwinding technique, despite its error-peaking at the transverse boundary. This error at the transverse-boundary, is found to be leading to non-physical solutions. Several remedies have been suggested in the allied fluid dynamics literature, which employs non-linear, iterative techniques. The present work attempts to address this issue, by retaining the computational efficiency of the GFEM. By suitable analysis, it is shown that the source of the problem can be attributed to the Coulomb's gauge. Therefore, to solve the problem, the Coulomb's gauge is taken out from the formulation and the associated weak form is derived. The effectiveness of this technique is demonstrated with pertinent numerical results.


翻译:电磁场的导体移动在电气设备中十分常见。 这些问题的数字模拟在电子设备的设计和分析中至关重要。 Galerkin 有限元素法(GFEM)是一个常用的模拟工具, 然而,由于高速度的内在数字不稳定性, GFEM 需要上风技术来处理移动导体问题。 简化上风/ Petrov-Galerkin (SU/PG) 计划是一种广泛承认的上风技术, 尽管它在横跨边界上出现错误。 跨边界的这一错误发现导致非物理解决办法。 使用非线性、 迭接技术的联结液体动态文献中已经提出了几种补救措施。 目前为解决这一问题, 通过保留 GFEM 的计算效率, 试图解决这个问题。 通过适当的分析, 显示问题的根源可以归属于Coulomb 的测量仪。 因此, 为了解决问题, Coulomb 测量仪是从配方取出来的, 并由此得出了相关微弱的形态。 该技术的有效性与数值有关。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
专知会员服务
40+阅读 · 2021年6月29日
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员