In this paper, we analyze the convergence of the operator-compressed multiscale finite element method (OC MsFEM) for Schr\"{o}dinger equations with general multiscale potentials in the semiclassical regime. In the OC MsFEM the multiscale basis functions are constructed by solving a constrained energy minimization. Under a mild assumption on the mesh size $H$, we prove the exponential decay of the multiscale basis functions so that localized multiscale basis functions can be constructed, which achieve the same accuracy as the global ones if the oversampling size $m = O(\log(1/H))$. We prove the first-order convergence in the energy norm and second-order convergence in the $L^2$ norm for the OC MsFEM and super convergence rates can be obtained if the solution possesses sufficiently high regularity. By analysing the regularity of the solution, we also derive the dependence of the error estimates on the small parameters of the Schr\"{o}dinger equation. We find that the OC MsFEM outperforms the finite element method (FEM) due to the super convergence behavior for high-regularity solutions and weaker dependence on the small parameters for low-regularity solutions in the presence of the multiscale potential. Finally, we present numerical results to demonstrate the accuracy and robustness of the OC MsFEM.
翻译:在本文中,我们分析了操作者-压缩的多级限量元素法(OC MsFEM)对于Schr\"{o}dinger 等式的趋同性(OC MsFEM)对于半古典制度具有一般的多级潜力。在OC MsFEM中,多级基础功能是通过解决限制的能源最小化来构建的。在对网格大小的轻微假设下,我们证明多级功能的指数衰减,这样就能够构建本地化的多级功能,如果超标大小为$m = O(\log(1/H)),这些功能的精确度与全球的相同。我们证明,在能源规范方面,第一级趋同性和第二级的趋同性($2美元规范)对于OC MsmEMm 的趋同性,如果解决方案具有足够高的规律性,则可以实现多级化。通过分析解决方案的规律性,我们还可以得出误算对Schr\\"{o}dinger等式小参数的依赖性。我们发现,OC MsFEM 的精确度方法比有限的要素方法(FEM)优于目前对高级的可靠度的可靠度,最终的超级的精确度,从而显示高度的超度的超度的超度的多级反应。