In this paper, we develop some novel bounds for the Rademacher complexity and the generalization error in deep learning with i.i.d. and Markov datasets. The new Rademacher complexity and generalization bounds are tight up to $O(1/\sqrt{n})$ where $n$ is the size of the training set. They can be exponentially decayed in the depth $L$ for some neural network structures. The development of Talagrand's contraction lemmas for high-dimensional mappings between function spaces and deep neural networks for general activation functions is a key technical contribution to this work.
翻译:在本文中,我们为Rademacher的复杂程度和与i.d.和Markov数据集的深层学习中的概括性错误开发了一些新颖的界限。新的Rademacher的复杂程度和概括性界限紧凑到$O(1/\sqrt{n})美元,而美元是培训的大小。对于某些神经网络结构来说,它们可以在深度上指数化地腐蚀为美元。在功能空间和用于一般激活功能的深神经网络之间进行高维绘图时,Talagrand的收缩性列腺是这项工作的关键技术贡献。