The classification of histopathological images is of great value in both cancer diagnosis and pathological studies. However, multiple reasons, such as variations caused by magnification factors and class imbalance, make it a challenging task where conventional methods that learn from image-label datasets perform unsatisfactorily in many cases. We observe that tumours of the same class often share common morphological patterns. To exploit this fact, we propose an approach that learns similarity-based multi-scale embeddings (SMSE) for magnification-independent histopathological image classification. In particular, a pair loss and a triplet loss are leveraged to learn similarity-based embeddings from image pairs or image triplets. The learned embeddings provide accurate measurements of similarities between images, which are regarded as a more effective form of representation for histopathological morphology than normal image features. Furthermore, in order to ensure the generated models are magnification-independent, images acquired at different magnification factors are simultaneously fed to networks during training for learning multi-scale embeddings. In addition to the SMSE, to eliminate the impact of class imbalance, instead of using the hard sample mining strategy that intuitively discards some easy samples, we introduce a new reinforced focal loss to simultaneously punish hard misclassified samples while suppressing easy well-classified samples. Experimental results show that the SMSE improves the performance for histopathological image classification tasks for both breast and liver cancers by a large margin compared to previous methods. In particular, the SMSE achieves the best performance on the BreakHis benchmark with an improvement ranging from 5% to 18% compared to previous methods using traditional features.
翻译:在癌症诊断和病理学研究中,对病理学图像进行分类具有巨大价值。然而,多种原因,如放大因子和阶级不平衡导致的变化,使得从图像标签数据集学习的传统方法在许多情况下不令人满意地表现不满意。我们观察到,同一类肿瘤往往具有共同的形态形态模式。为了利用这一事实,我们建议一种方法,学习类似基于多级嵌入的放大性-独立直系病理图像分类(SMSSE)的多级嵌入(SMSSE),特别是利用双胞胎损失和三胞胎损失从图像配对或图像三胞胎中学习基于类似嵌入的嵌入。这使得从图像标签数据集中学习的常规方法在很多情况下不令人满意地测量图像之间的相似性。为了保证生成的模型依赖放大性,在学习多级嵌入的传统图像分类过程中,同时将不同放大性嵌入的图像输入网络。除了SMSE,将SMSE比较基于相似性嵌入的嵌入性嵌入的类似嵌入式嵌入性嵌入方法,同时将以往的图像样本中容易地展示S-rodealimalimal missal 。使用S-roalimalimalimal main real rolal real realalalalal remamal 将S