When the Stable Unit Treatment Value Assumption (SUTVA) is violated and there is interference among units, there is not a uniquely defined Average Treatment Effect (ATE), and alternative estimands may be of interest, among them average unit-level differences in outcomes under different homogeneous treatment policies. We term this target the Homogeneous Assignment Average Treatment Effect (HAATE). We consider approaches to experimental design with multiple treatment conditions under partial interference and, given the estimand of interest, we show that difference-in-means estimators may perform better than correctly specified regression models in finite samples on root mean squared error (RMSE). With errors correlated at the cluster level, we demonstrate that two-stage randomization procedures with intra-cluster correlation of treatment strictly between zero and one may dominate one-stage randomization designs on the same metric. Simulations demonstrate performance of this approach; an application to online experiments at Facebook is discussed.
翻译:当稳定的单位治疗价值假设(SUTVA)被违反,而且各单位之间出现干扰时,没有单独界定的平均治疗效果(ATE),替代估计值可能值得注意,其中包括不同同质治疗政策下结果的平均单位水平差异。我们把这个目标称为“同质分配平均治疗效果(HAATE ) ” 。我们考虑在部分干扰下以多种治疗条件进行实验设计的方法,并且,鉴于兴趣之高,我们发现,在根平均值正方差(RMSE)的有限样本中,差异估计值估计值的回归模型效果可能优于正确指定的回归模型。在分组一级出现错误时,我们证明,与严格在零和一之间进行集中治疗的两阶段随机化程序可能主导同一指标的一阶段随机化设计。模拟了这一方法的绩效;在Facebook上对在线实验的应用得到了讨论。