Pest and disease control plays a key role in agriculture since the damage caused by these agents are responsible for a huge economic loss every year. Based on this assumption, we create an algorithm capable of detecting rust (Hemileia vastatrix) and leaf miner (Leucoptera coffeella) in coffee leaves (Coffea arabica) and quantify disease severity using a mobile application as a high-level interface for the model inferences. We used different convolutional neural network architectures to create the object detector, besides the OpenCV library, k-means, and three treatments: the RGB and value to quantification, and the AFSoft software, in addition to the analysis of variance, where we compare the three methods. The results show an average precision of 81,5% in the detection and that there was no significant statistical difference between treatments to quantify the severity of coffee leaves, proposing a computationally less costly method. The application, together with the trained model, can detect the pest and disease over different image conditions and infection stages and also estimate the disease infection stage.
翻译:虫害和疾病控制在农业中发挥着关键作用,因为这些物剂造成的破坏每年造成巨大的经济损失。根据这一假设,我们创建了一种算法,能够检测咖啡叶中的生锈(Hemilia fastarrix)和叶矿(Leucoptera coffella)和叶矿(Leucoptera coffella),并使用移动应用作为模型推断的高端界面来量化疾病严重程度。我们使用不同的进化神经网络结构来创建物体探测器,除了开放 CV 图书馆、 k- means 和 三种治疗方法: RGB 和 量化价值, AFSFSoft 软件,以及差异分析,我们在此比较了三种方法。结果显示,在检测中平均精确度为81.5%,在测定咖啡叶严重程度的治疗方法之间没有显著的统计差异,提出了一种成本较低的计算方法。应用与经过培训的模型一起,可以在不同图像和感染阶段检测虫害和疾病,并估计疾病感染阶段。