Predicting pedestrian motion is essential for developing socially-aware robots that interact in a crowded environment. While the natural visual perspective for a social interaction setting is an egocentric view, the majority of existing work in trajectory prediction therein has been investigated purely in the top-down trajectory space. To support first-person view trajectory prediction research, we present T2FPV, a method for constructing high-fidelity first-person view (FPV) datasets given a real-world, top-down trajectory dataset; we showcase our approach on the ETH/UCY pedestrian dataset to generate the egocentric visual data of all interacting pedestrians, creating the T2FPV-ETH dataset. In this setting, FPV-specific errors arise due to imperfect detection and tracking, occlusions, and field-of-view (FOV) limitations of the camera. To address these errors, we propose CoFE, a module that further refines the imputation of missing data in an end-to-end manner with trajectory forecasting algorithms. Our method reduces the impact of such FPV errors on downstream prediction performance, decreasing displacement error by more than 10% on average. To facilitate research engagement, we release our T2FPV-ETH dataset and software tools.
翻译:预测行人运动是发展在拥挤环境中互动的社会觉悟机器人的关键。虽然社会互动环境的自然视觉视角是一种自我中心观点,但目前关于轨道预测的大部分工作都纯粹在自上而下轨道空间进行了调查。为支持第一人查看轨迹预测研究,我们提出了T2FPV,这是构建高度忠诚第一人视图(FPV)数据集的一种方法,提供了真实世界、自上而下轨道数据集;我们在ETH/UCY行人数据集上展示了我们的方法,以生成所有互动行人以自我中心为中心的视觉数据,创建了T2FPV-ETH数据集。在这一设置中,FPV特有的错误是由于摄像头的检测和跟踪不完善、隐蔽和视野外观(FOV)限制。为了解决这些错误,我们提出了CoFE,一个模块,用轨迹预测算法进一步改进了缺失数据的精度。我们的方法减少了这种FPV错误对下游预测性功能的影响,减少了T2F值错误减少10%以上的平均工具。促进我们的研究。</s>