We define a new class of Gaussian processes on compact metric graphs such as street or river networks. The proposed models, the Whittle-Mat\'ern fields, are defined via a fractional stochastic partial differential equation on the compact metric graph and are a natural extension of Gaussian fields with Mat\'ern covariance functions on Euclidean domains to the non-Euclidean metric graph setting. Existence of the processes, as well as their sample path regularity properties are derived. The model class in particular contains differentiable Gaussian processes. To the best of our knowledge, this is the first construction of a valid differentiable Gaussian field on general compact metric graphs. We then focus on a model subclass which we show contains processes with Markov properties. For this case, we show how to evaluate finite dimensional distributions of the process exactly and computationally efficiently. This facilitates using the proposed models for statistical inference without the need for any approximations. Finally, we derive some of the main statistical properties of the model class, such as consistency of maximum likelihood estimators of model parameters and asymptotic optimality properties of linear prediction based on the model with misspecified parameters.
翻译:我们在街道或河流网络等紧凑度图上定义一个新的高斯进程类别。 拟议的模型, Whittle- Mat\'ern 字段, 是通过紧凑度图上的分微随机偏差部分方程式来定义的, 并且是高斯域的自然延伸, 在欧几里德域的 Mat\'ern 共变函数中, 在欧几里德域上, 以非欧几里德 度图设置 。 进程的存在, 以及它们的样本路径的规律性特性 。 模型类特别包含不同的高斯进程 。 根据我们的知识, 这是在一般紧凑度图上首次构建一个有效的可区别高斯域。 然后我们集中关注一个模型子类, 显示含有有Markov 特性的进程 。 在本案中, 我们展示如何准确和有效地评估过程的有限维分布 。 这有利于在不需要任何近比值的情况下使用拟议的统计推断模型 。 最后, 我们从模型类的主要统计属性中得出一些主要统计属性, 例如, 与基于最有可能的模型参数的精确度参数 。