Although recent advances in deep learning (DL) have shown a great promise for learning physics exhibiting complex spatiotemporal dynamics, the high training cost, unsatisfying extrapolability for long-term predictions, and poor generalizability in out-of-sample regimes significantly limit their applications in science/engineering problems. A more promising way is to leverage available physical prior and domain knowledge to develop scientific DL models, known as physics-informed deep learning (PiDL). In most existing PiDL frameworks, e.g., physics-informed neural networks, the physics prior is mainly utilized to regularize neural network training by incorporating governing equations into the loss function in a soft manner. In this work, we propose a new direction to leverage physics prior knowledge by baking the mathematical structures of governing equations into the neural network architecture design. In particular, we develop a novel PDE-preserved neural network (PPNN) for rapidly predicting parametric spatiotemporal dynamics, given the governing PDEs are (partially) known. The discretized PDE structures are preserved in PPNN as convolutional residual network (ConvResNet) blocks, which are formulated in a multi-resolution setting. This physics-inspired learning architecture design endows PPNN with excellent generalizability and long-term prediction accuracy compared to the state-of-the-art black-box ConvResNet baseline. The effectiveness and merit of the proposed methods have been demonstrated over a handful of spatiotemporal dynamical systems governed by unsteady PDEs, including reaction-diffusion, Burgers', and Navier-Stokes equations.
翻译:虽然最近在深层学习(DL)方面的进步显示,在学习物理学学学方面大有希望,显示复杂的时空动态,但培训费用高,长期预测无法满足的外推法,外抽样制度不具有一般性,大大限制了其在科学/工程问题方面的应用。一个更有希望的方法是利用现有的物理先期和域知识开发科学DL模型,称为物理知情深层学习(PiDL)。在大多数现有的PiDL框架中,例如物理学知情神经网络,以前的物理学主要用来规范神经网络培训,以软的方式将治理等式纳入损失功能中。在这项工作中,我们提出了利用物理知识的新方向,将治理等式的数学结构纳入神经网络设计设计设计中。特别是,我们开发了一个新型的PDE预设神经网络(PPNNNN),以管理PDE系统(部分)为已知的,将非透明的PDE网络化的黑度结构保存在PDOF Ral-nal-nal-stal-stal-stal-stal-stal-stal-deal-deal-deal-deal-listrual-deal-deal-listrual-stal-stal-stal-listral-stal-listal-stal-stal-stal-legal-stal-legal-legal-legal-legal-st-legal-legismismal-st-legal-stal-stal-st-le)网络,该系统,该系统,该系统是这一结构的升级的升级的升级的升级的升级的模型的模型的升级和精化和精化的模型的模型的升级的模型,该的模型,该结构的模型的升级的升级的升级的模型的模型的模型的升级-S-in-inal-S-de-in-in-in-in-in-in-de-inal-de-de-de-de-de-de-de-legal-inal-in-in-in-laism-in-in-in-incal-p-res)。