We prove that Sherali-Adams with polynomially bounded coefficients requires proofs of size $n^{\Omega(d)}$ to rule out the existence of an $n^{\Theta(1)}$-clique in Erd\H{o}s-R\'{e}nyi random graphs whose maximum clique is of size $d\leq 2\log n$. This lower bound is tight up to the multiplicative constant in the exponent. We obtain this result by introducing a technique inspired by pseudo-calibration which may be of independent interest. The technique involves defining a measure on monomials that precisely captures the contribution of a monomial to a refutation. This measure intuitively captures progress and should have further applications in proof complexity.
翻译:暂无翻译