Recent work has shown deep learning can accelerate the prediction of physical dynamics relative to numerical solvers. However, limited physical accuracy and an inability to generalize under distributional shift limit its applicability to the real world. We propose to improve accuracy and generalization by incorporating symmetries into convolutional neural networks. Specifically, we employ a variety of methods each tailored to enforce a different symmetry. Our models are both theoretically and experimentally robust to distributional shift by symmetry group transformations and enjoy favorable sample complexity. We demonstrate the advantage of our approach on a variety of physical dynamics including Rayleigh B\'enard convection and real-world ocean currents and temperatures. Compared with image or text applications, our work is a significant step towards applying equivariant neural networks to high-dimensional systems with complex dynamics. We open-source our simulation, data, and code at \url{https://github.com/Rose-STL-Lab/Equivariant-Net}.
翻译:最近的工作表明,深层次的学习可以加速预测相对数字求解器的物理动态。然而,有限的物理精确度和无法在分布式转换中推广物理动态,限制了其对真实世界的适用性。我们提议通过将对称性纳入进化神经网络来提高准确性和概括性。具体地说,我们采用各种定制的方法来实施不同的对称性。我们的模型在理论上和实验上都对通过对称性组变换和享受有利的样本复杂性来进行分布式变换具有很强性能。我们展示了我们的方法在各种物理动态上的优势,包括Rayleigh B\'en'ard对流和现实世界洋流和温度。与图像或文本应用相比,我们的工作是朝着将等异性神经网络应用于具有复杂动态的高维度系统迈出的重要一步。我们在\url{https://github.com/Rose-STL-Lab/Equivariant-Net}我们打开了我们的模拟、数据和代码。