This paper focuses on the strong convergence of the truncated $\theta$-Milstein method for a class of nonautonomous stochastic differential delay equations whose drift and diffusion coefficients can grow polynomially. The convergence rate, which is close to one, is given under the weaker assumption than the monotone condition. To verify our theoretical findings, we present a numerical example.
翻译:本文着重论述对一类非自主随机差分延迟方程式的耗尽的美元(theta$-Milstein)方法的高度趋同性,该方法的漂移和传播系数可以在多元形式上增长。 接近于一个的趋同率是在比单质条件更弱的假设下给出的。 为了验证我们的理论结果,我们举了一个数字例子。