Multiple hypothesis testing has been widely applied to problems dealing with high-dimensional data, e.g., selecting significant variables and controlling the selection error rate. The most prevailing measure of error rate used in the multiple hypothesis testing is the false discovery rate (FDR). In recent years, local false discovery rate (fdr) has drawn much attention, due to its advantage of accessing the confidence of individual hypothesis. However, most methods estimate fdr through p-values or statistics with known null distributions, which are sometimes not available or reliable. Adopting the innovative methodology of competition-based procedures, e.g., knockoff filter, this paper proposes a new approach, named TDfdr, to local false discovery rate estimation, which is free of the p-values or known null distributions. Simulation results demonstrate that TDfdr can accurately estimate the fdr with two competition-based procedures. In real data analysis, the power of TDfdr on variable selection is verified on two biological datasets.


翻译:多重假设测试被广泛应用于涉及高维数据的问题,例如选择重要的变量和控制选择错误率。在多个假设测试中,最普遍的误差率衡量方法是假发现率(FDR)。近年来,当地虚假发现率(fdr)由于具有获得个人假设信任的优势而引起极大注意。然而,大多数方法通过p-value或已知无效分布的统计估计fdr fdr,有时无法获取或可靠。本文采用了基于竞争的程序的创新方法,例如,淘汰过滤器。本文提出了一种新的方法,即称为TDfdr, 当地虚假发现率估计法,该方法没有p-value或已知的无效分布法。模拟结果表明,TDfdr可以用两种基于竞争的程序准确估计fdr。在实际数据分析中,TDfdr对变量选择的力量在两个生物数据集上得到验证。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月21日
Arxiv
0+阅读 · 2022年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员