Online A/B testing is widely used in the internet industry to inform decisions on new feature roll-outs. For online marketplaces (such as advertising markets), standard approaches to A/B testing may lead to biased results when buyers operate under a budget constraint, as budget consumption in one arm of the experiment impacts performance of the other arm. To counteract this interference, one can use a budget-split design where the budget constraint operates on a per-arm basis and each arm receives an equal fraction of the budget, leading to ``budget-controlled A/B testing.'' Despite clear advantages of budget-controlled A/B testing, performance degrades when budget are split too small, limiting the overall throughput of such systems. In this paper, we propose a parallel budget-controlled A/B testing design where we use market segmentation to identify submarkets in the larger market, and we run parallel experiments on each submarket. Our contributions are as follows: First, we introduce and demonstrate the effectiveness of the parallel budget-controlled A/B test design with submarkets in a large online marketplace environment. Second, we formally define market interference in first-price auction markets using the first price pacing equilibrium (FPPE) framework. Third, we propose a debiased surrogate that eliminates the first-order bias of FPPE, drawing upon the principles of sensitivity analysis in mathematical programs. Fourth, we derive a plug-in estimator for the surrogate and establish its asymptotic normality. Fifth, we provide an estimation procedure for submarket parallel budget-controlled A/B tests. Finally, we present numerical examples on semi-synthetic data, confirming that the debiasing technique achieves the desired coverage properties.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员