By bringing computing capacity from a remote cloud environment closer to the user, fog computing is introduced. As a result, users can access the services from more nearby computing environments, resulting in better quality of service and lower latency on the network. From the service providers' point of view, this addresses the network latency and congestion issues. This is achieved by deploying the services in cloud and fog computing environments. The responsibility of service providers is to manage the heterogeneous resources available in both computing environments. In recent years, resource management strategies have made it possible to efficiently allocate resources from nearby fog and clouds to users' applications. Unfortunately, these existing resource management strategies fail to give the desired result when the service providers have the opportunity to allocate the resources to the users' application from fog nodes that are at a multi-hop distance from the nearby fog node. The complexity of this resource management problem drastically increases in a MultiFog-Cloud environment. This problem motivates us to revisit and present a novel Heuristic Resource Allocation and Optimization algorithm in a MultiFog-Cloud (HeRAFC) environment. Taking users' application priority, execution time, and communication latency into account, HeRAFC optimizes resource utilization and minimizes cloud load. The proposed algorithm is evaluated and compared with related algorithms. The simulation results show the efficiency of the proposed HeRAFC over other algorithms.


翻译:通过使远程云层环境的计算能力更接近用户,引入了雾计算。因此,用户可以从更近的计算机环境中获得服务,从而提高服务质量,降低网络的延迟度。从服务提供者的角度来看,这解决了网络的延迟性和拥堵问题。通过在云雾计算环境中部署服务,服务供应商的责任是管理两种计算环境中的多种资源。近年来,资源管理战略使我们能够有效地从附近的雾云中向用户应用程序分配资源。不幸的是,当服务供应商有机会从离附近的雾节点多点的雾节点向用户应用程序分配资源时,这些现有资源管理战略没有产生预期的结果。在多点的雾节点,执行时间和通信将资源分配给用户应用程序。这种资源管理问题的复杂性在多点和雾雾计算环境中急剧增加。这个问题促使我们重新审视和提出一个新的“Heurist资源配置和最佳化算法”,在多视野(HeRAFC)环境中,在用户应用程序的优先度、执行时间和通信算法方面,将拟议的云层算法和通信算算结果降到了拟议的最佳程度。他将优化的计算算算上,他拟议的云层和最优化的计算结果将显示为最佳的计算结果。</s>

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Stream Efficient Learning
Arxiv
0+阅读 · 2023年5月3日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员