Document understanding is a key business process in the data-driven economy since documents are central to knowledge discovery and business insights. Converting documents into a machine-processable format is a particular challenge here due to their huge variability in formats and complex structure. Accordingly, many algorithms and machine-learning methods emerged to solve particular tasks such as Optical Character Recognition (OCR), layout analysis, table-structure recovery, figure understanding, etc. We observe the adoption of such methods in document understanding solutions offered by all major cloud providers. Yet, publications outlining how such services are designed and optimized to scale in the cloud are scarce. In this paper, we focus on the case of document conversion to illustrate the particular challenges of scaling a complex data processing pipeline with a strong reliance on machine-learning methods on cloud infrastructure. Our key objective is to achieve high scalability and responsiveness for different workload profiles in a well-defined resource budget. We outline the requirements, design, and implementation choices of our document conversion service and reflect on the challenges we faced. Evidence for the scaling behavior and resource efficiency is provided for two alternative workload distribution strategies and deployment configurations. Our best-performing method achieves sustained throughput of over one million PDF pages per hour on 3072 CPU cores across 192 nodes.
翻译:在数据驱动的经济中,文件理解是一个关键的业务流程,因为文件是知识发现和商业洞察的核心。将文件转换成机器处理格式,由于格式和复杂结构的差别很大,因此,由于文件转换成为机器处理格式是一个特别的挑战。因此,出现了许多算法和机器学习方法,以解决特定任务,例如光学字符识别、布局分析、表结构恢复、图解等等。我们观察所有主要云源提供方在文件理解解决方案中采用这种方法。然而,关于这些服务如何设计和优化在云层中推广的出版物很少。在本文件中,我们着重文件转换的案例,以说明在云层中扩大复杂的数据处理管道,并大力依赖机器学习云层基础设施的特殊挑战。我们的主要目标是在明确界定的资源预算中实现不同工作量分布的高度可扩展性和应对性。我们概述了我们文件转换服务的需求、设计和实施选择,并思考我们面临的挑战。关于如何扩大这些服务的规模和资源效率,为两个备选的工作量分配战略和部署配置提供了证据。我们的最佳方法是,在每30万个CPDF每小时达到192个C。