Macro placement is the problem of placing memory blocks on a chip canvas. It can be formulated as a combinatorial optimization problem over sequence pairs, a representation which describes the relative positions of macros. Solving this problem is particularly challenging since the objective function is expensive to evaluate. In this paper, we develop a novel approach to macro placement using Bayesian optimization (BO) over sequence pairs. BO is a machine learning technique that uses a probabilistic surrogate model and an acquisition function that balances exploration and exploitation to efficiently optimize a black-box objective function. BO is more sample-efficient than reinforcement learning and therefore can be used with more realistic objectives. Additionally, the ability to learn from data and adapt the algorithm to the objective function makes BO an appealing alternative to other black-box optimization methods such as simulated annealing, which relies on problem-dependent heuristics and parameter-tuning. We benchmark our algorithm on the fixed-outline macro placement problem with the half-perimeter wire length objective and demonstrate competitive performance.
翻译:宏定位是将内存区块放置在芯片画布上的问题。 它可以被设计成一个组合式优化问题, 用于描述序列对齐, 描述宏的相对位置。 解决这个问题特别具有挑战性, 因为客观功能评估费用昂贵。 在本文中, 我们开发了一种新颖的宏观定位方法, 使用巴耶斯优化( BO) 而不是序列对齐。 BO 是一种机器学习技术, 使用一种概率替代模型和获取功能, 平衡勘探和开发, 以高效优化黑盒目标功能。 BO 比强化学习更具样本效率, 因此可以用更现实的目标来使用。 此外, 从数据中学习和将算法适应目标功能的能力使得 BO 成为了其他黑盒优化方法的诱人替代方法, 比如, 模拟安奈拉法依赖问题偏重法和参数调。 我们用固定外大型定位的算法, 以半孔线线长度目标为基准, 并展示有竞争力的表现 。