The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.
翻译:机器学习的进展为将情报带给诸如微控控器等低端互联网事物节点打开了新的机会。 常规机器学习部署的记忆力和计算足迹高,妨碍了它们直接部署到超资源限制的微控控器。 本文强调了使微控控器级设备能够在机上学习的独特要求。 研究人员对资源有限的应用程序使用专门的模型开发工作流程,以确保计算和潜伏预算在设备限度内,同时仍然保持预期的性能。 我们把微控器级设备机器学习模型开发的封闭通道描述为广泛应用的机器学习模式开发流程,并表明若干类别的应用都采用了这一特定实例。 我们通过展示一些使用案例,向模型开发的不同阶段提供定性和数字的洞察力。 最后,我们确定了公开的研究挑战和需要谨慎考虑的未决问题。