We investigate unsupervised person re-identification (Re-ID) with clothes change, a new challenging problem with more practical usability and scalability to real-world deployment. Most existing re-id methods artificially assume the clothes of every single person to be stationary across space and time. This condition is mostly valid for short-term re-id scenarios since an average person would often change the clothes even within a single day. To alleviate this assumption, several recent works have introduced the clothes change facet to re-id, with a focus on supervised learning person identity discriminative representation with invariance to clothes changes. Taking a step further towards this long-term re-id direction, we further eliminate the requirement of person identity labels, as they are significantly more expensive and more tedious to annotate in comparison to short-term person re-id datasets. Compared to conventional unsupervised short-term re-id, this new problem is drastically more challenging as different people may have similar clothes whilst the same person can wear multiple suites of clothes over different locations and times with very distinct appearance. To overcome such obstacles, we introduce a novel Curriculum Person Clustering (CPC) method that can adaptively regulate the unsupervised clustering criterion according to the clustering confidence. Experiments on three long-term person re-id datasets show that our CPC outperforms SOTA unsupervised re-id methods and even closely matches the supervised re-id models.
翻译:我们调查了未经监督的人换衣服的重新身份(Re-ID),这是一个具有更实际可用性和可伸缩到现实世界部署的新的挑战性的新问题。大多数现有的重新确定方法都人为地假定每个个人的衣服在时空间和时间上是固定的。这个条件大多适用于短期重新确定假设,因为一个普通人甚至在一天之内也会经常改变衣服。为了减轻这一假设,最近的一些工作引入了服装更换面面面重新重新定位,重点是受监督的学习个人身份的区别性代表形式,而不能改变衣服。进一步朝着这一长期重新确定的方向前进,我们进一步取消了个人身份标签的要求,因为与短期的人重新确定数据集相比,它们费用要高得多,而且更加迟钝。与传统的未经监督的短期重新确定服装相比,这一新的问题更加具有巨大的挑战性,因为不同的人可能有相似的衣服,而同一人可以在不同地点和不同的时候穿多套衣服。为了克服这种长期重新确定的方向,我们进一步取消对个人身份标签的要求,我们甚至引入了一个新的、更昂贵的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的C压的C压式的CLIS的CFLULM,以显示一个更调整的、更像的S-C-C-C-C-S-C-C-C-S-S-I-I-I-S-I-I-C-C-C-C-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-II-II-I-I-I-I-I-I-I-II-II-II-I-I-I-II-II-I-I-I-II-II-II-II-I-I-II-II-II-I-I-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-I-II-II-II-II-II-II-II-II-SS-II-II-II-II-II-I-II-II-II-II-II-II-