Temporal graphs naturally model graphs whose underlying topology changes over time. Recently, the problems TEMPORAL VERTEX COVER (or TVC) and SLIDING-WINDOW TEMPORAL VERTEX COVER(or $\Delta$-TVC for time-windows of a fixed-length $\Delta$) have been established as natural extensions of the classic problem VERTEX COVER on static graphs with connections to areas such as surveillance in sensor networks. In this paper we initiate a systematic study of the complexity of TVC and $\Delta$-TVC on sparse graphs. Our main result shows that for every $\Delta\geq 2$, $\Delta$-TVC is NP-hard even when the underlying topology is described by a path or a cycle. This resolves an open problem from literature and shows a surprising contrast between $\Delta$-TVC and TVC for which we provide a polynomial-time algorithm in the same setting. To circumvent this hardness, we present a number of exact and approximation algorithms for temporal graphs whose underlying topologies are given by a path, that have bounded vertex degree in every time step, or that admit a small-sized temporal vertex cover.


翻译:自然的温度图形 自然的模型图 其基本表层随着时间的推移的变化。 最近, TEMPORAL VERTEX CEV( 或 TVC) 和 SLIDING- WINDOW TTEMPORAL TEMPORAL VERTEX COV( 或$Delta$- TVC) 的问题被确定为固定长度 $\ Delta$ 的时窗的自然模型图的自然延伸。 VERTEEX CEVE 与传感器网络监视等领域的连接的静态图形VERTEEX CVEVE 的自然延伸。 在本文中, 我们开始系统研究TVC 和 $\ Delta$- TVC 的复杂程度。 我们的主要结果显示, 每一个$\ Delta\ geq 2$, $\ geq, $\ Delta$\ TVC $\ TVC 和 SLVC 的复杂程度。 这解决了文学的开放问题, 并展示了在同一环境中提供多时段算算算算算算算算算法。 为了规避, 我们展示了多少一个固定的时程缩缩缩缩图, 。

0
下载
关闭预览

相关内容

视觉计算机(TVC)期刊发布关于捕捉,识别,建模,分析和生成形状和图像的所有研究领域的文章。它包括图像理解,用于图形的机器学习和3D制作。还覆盖以下主题:3D重建、电脑动画、计算结构、计算几何、计算摄影计算机图形学的计算机视觉、图形数据压缩、几何造型、几何加工、人机交互和计算机图形学、人体建模、图像分析、基于图像的渲染、图像处理、图形机器学习、医学影像、模式识别、基于物理的建模、照明和渲染方法 、 机器人与视觉、显着方法、科学可视化、形状和表面建模、形状分析和图像检索、形状匹配、基于草图的建模、实体建模、程式化的渲染、贴图、虚拟和增强现实、视觉分析、体积渲染。 官网地址:http://dblp.uni-trier.de/db/journals/vc/
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员