This work addresses the problem of predicting the motion trajectories of dynamic objects in the environment. Recent advances in predicting motion patterns often rely on machine learning techniques to extrapolate motion patterns from observed trajectories, with no mechanism to directly incorporate known rules. We propose a novel framework, which combines probabilistic learning and constrained trajectory optimisation. The learning component of our framework provides a distribution over future motion trajectories conditioned on observed past coordinates. This distribution is then used as a prior to a constrained optimisation problem which enforces chance constraints on the trajectory distribution. This results in constraint-compliant trajectory distributions which closely resemble the prior. In particular, we focus our investigation on collision constraints, such that extrapolated future trajectory distributions conform to the environment structure. We empirically demonstrate on real-world and simulated datasets the ability of our framework to learn complex probabilistic motion trajectories for motion data, while directly enforcing constraints to improve generalisability, producing more robust and higher quality trajectory distributions.
翻译:这项工作解决了预测环境中动态物体运动轨迹的问题。最近预测运动模式的进展往往依靠机器学习技术从观察到的轨迹中推断出运动模式,而没有直接纳入已知规则的机制。我们提出了一个新框架,将概率学习和限制轨道优化结合起来。我们框架的学习组成部分为以观察到的过去坐标为条件的未来运动轨迹提供了分布。然后,这种分布被用作在限制优化问题之前使用,以强制对轨迹分布施加机会限制。这导致与以往相似的制约性轨迹分布。特别是,我们集中调查碰撞制约因素,例如外推未来轨迹分布符合环境结构的外推。我们在现实世界和模拟数据中以实验方式展示了我们框架学习复杂的概率运动轨迹的能力,同时直接施加限制,以提高一般性,产生更有力、更高质量的轨迹分布。