We examine four important considerations for the development of covariate adjustment methodologies in the context of indirect treatment comparisons. Firstly, we consider potential advantages of weighting versus outcome modeling, placing focus on bias-robustness. Secondly, we outline why model-based extrapolation may be required and useful, in the specific context of indirect treatment comparisons with limited overlap. Thirdly, we describe challenges for covariate adjustment based on data-adaptive outcome modeling. Finally, we offer further perspectives on the promise of doubly-robust covariate adjustment frameworks.
翻译:暂无翻译