In this article, we employ a collection of stochastic differential equations with drift and diffusion coefficients approximated by neural networks to predict the trend of chaotic time series which has big jump properties. Our contributions are, first, we propose a model called L\'evy induced stochastic differential equation network, which explores compounded stochastic differential equations with $\alpha$-stable L\'evy motion to model complex time series data and solve the problem through neural network approximation. Second, we theoretically prove the convergence of our algorithm with respect to hyper-parameters of the neural network, and obtain the error bound without curse of dimensionality. Finally, we illustrate our method by applying it to real financial time series data and find the accuracy increases through the use of non-Gaussian L\'evy processes. We also present detailed comparisons in terms of data patterns, various models, different shapes of L\'evy motion and the prediction lengths.
翻译:在此篇文章中,我们用一系列具有神经网络所近似漂移和扩散系数的随机差分方程式来预测具有巨大跳跃特性的混乱时间序列趋势。 我们的贡献是,首先,我们提出一个名为L\'evy诱发的随机差分方程网络的模型,该模型探索以$\alpha$- sable L\'evy 运动来模拟复杂时间序列数据的复合随机差分方程式,并通过神经网络近似来解决问题。第二,我们理论上证明我们的算法与神经网络的超参数相融合,并在没有维度诅咒的情况下获得错误约束。最后,我们通过将它应用到实际财务时间序列数据中来说明我们的方法,并通过使用非Gausian L\'evy进程来发现准确性的提高。我们还在数据模式、各种模型、L\'evy运动的不同形状和预测长度方面进行了详细的比较。