Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
翻译:视觉假冒日益在主流媒体中造成一种存在问题,神经图像合成方法迅速演变。虽然发现这类假冒在图像法证界是一个令人费解的问题,但最近一类的法医探测器 -- -- 通用探测器 -- -- 能够令人惊讶地发现假冒图像,而不管发电机结构、损失功能、培训数据集和分辨率如何。这种引人入胜的特性表明在通用探测器中可能存在可转移的法医特征(T-FF)。在这项工作中,我们进行了第一次分析研究,以发现和了解通用探测器中的T-FF。我们的贡献有2倍:1)我们建议了一个新的法医特征相关统计数据(FF-RS),以便在通用探测器中量化和发现T-FF;2)我们定性和定量调查发现了一个意外发现:在通用探测器中,颜色是关键的T-FF。可在https://keshik6.github.io/traffable-forensc-fetatures/上找到代码和模型。