The development and implementation of visual-inertial odometry (VIO) has focused on structured environments, but interest in localization in off-road environments is growing. In this paper, we present the ROOAD which provides high-quality, time-synchronized off-road monocular visual-inertial data sequences to further the development of related research. We exhibit the 2-30x worse performance of two established VIO implementations, OpenVINS and VINS-Fusion, when stable, and the former is less prone to estimation divergences on our data sequences. The accuracy and repeatability of Kalibr's IMU-camera extrinsics calibration tool is measured to be +/-1 degrees for orientation and +/-1mm at best (left-right) and +/-10mm (depth) at worse for position estimation in the camera frame. This novel dataset provides a new set of scenarios for researchers to design and test their localization algorithms on, as well as critical insights in the current performance of VIO off-road. ROOAD Dataset: github.com/unmannedlab/ROOAD
翻译:在本文中,我们介绍的ROOAD提供了高质量的、时间同步的离轨道单视视光光度数据序列,以进一步发展相关研究。我们展示了两个既定的VIO(OpenVINS和VINS-Fusion)实施的2-30x更差的性能,当稳定时,OpenVINS和VINS-Fusion这两个既定的VIO(OpenVINS和VINS-Fusion)的性能更差,前者不太容易估计我们数据序列的差异。Kalibr的IMU-Mamera(IMU-MAC-Explinsications)校准工具的准确性和可重复性被测量为指向的+/-1度,最佳(左偏右)和+/-1毫米(深度)的超/10毫米。这个新数据集为研究人员设计和测试其本地化算法提供了一套新情景,以及VIO(O)离轨道当前性能的关键洞察力。RODSODDset:Guthhubub.com/unlasheddnaset:GUDset:GODaset:GADset:GHADard/ODDDDDDRO:GRO:GHADDRO:GHADDDDRO:GUDDDDDDDDDDDDDDDDDDD