Quantitative evaluation of human stability using foot pressure/force measurement hardware and motion capture (mocap) technology is expensive, time consuming, and restricted to the laboratory (lab-based). We propose a novel image-based method to estimate three key components for stability computation: Center of Mass (CoM), Base of Support (BoS), and Center of Pressure (CoP). Furthermore, we quantitatively validate our image-based methods for computing two classic stability measures against the ones generated directly from lab-based sensory output (ground truth) using a publicly available multi-modality (mocap, foot pressure, 2-view videos), ten-subject human motion dataset. Using leave-one-subject-out cross validation, our experimental results show: 1) our CoM estimation method (CoMNet) consistently outperforms state-of-the-art inertial sensor-based CoM estimation techniques; 2) our image-based method combined with insole foot-pressure alone produces consistent and statistically significant correlation with ground truth stability measures (CoMtoCoP R=0.79 P<0.001, CoMtoBoS R=0.75 P<0.001); 3) our fully image-based stability metric estimation produces consistent, positive, and statistically significant correlation on the two stability metrics (CoMtoCoP R=0.31 P<0.001, CoMtoBoS R=0.22 P<0.001). Our study provides promising quantitative evidence for stability computations and monitoring in natural environments.
翻译:使用脚压/力测量硬件和运动捕获(软盘)技术对人类稳定性进行定量评估,成本昂贵、耗时,而且仅限于实验室(实验室基)。我们提出一种基于图像的新颖方法,用于估算三个关键元素,用于计算稳定性:质量中心(COM)、支持基础(BoS)和压力中心(COP)。此外,我们用一种公开的多种模式(mocap、脚压、2视图视频)、10个主人类运动数据集,对基于脚压和运动的捕获(mocap)对人体稳定性进行定量评估。 我们的COM估算方法(CoMNet)一贯优于基于静态传感器的常规评估技术。 2)我们基于图像的方法与单止步压单结合,与基于实验室的稳定性措施(CoMtoCop R=0.79 P <0.001, COM-S=0.75 P < 0.001];我们以离位为主的自然稳定性进行持续稳定性统计研究。