In a wireless sensor network, data from various sensors are gathered to estimate the system-state of the process system. However, adversaries aim at distorting the system-state estimate, for which they may infiltrate sensors or position additional devices in the environment. To authenticate the received process values, the integrity of the measurements from different sensors can be evaluated jointly with the temporal integrity of channel measurements from each sensor. For this purpose, we design a security protocol, in which Kalman filters are used to predict the system-state and the channel-state values, and the received data are authenticated by a hypothesis test. We theoretically analyze the adversarial success probability and the reliability rate obtained in the hypothesis test in two ways, based on a chi-square approximation and on a Gaussian approximation. The two approximations are exact for small and large data vectors, respectively. The Gaussian approximation is suitable for analyzing massive single-input multiple-output (SIMO) setups. To obtain additional insights, the approximation is further adapted for the case of channel hardening, which occurs in massive SIMO fading channels. As adversaries always look for the weakest point of a system, a time-constant security level is required. To provide such a service, the approximations are used to propose time-varying threshold values for the hypothesis test, which approximately attain a constant security level. Numerical results show that a constant security level can only be achieved by a time-varying threshold choice, while a constant threshold value leads to a time-varying security level.


翻译:在一个无线传感器网络中,收集来自各种传感器的数据,以估计过程系统的系统状态。然而,对手的目的是扭曲系统状态估计,从而可能渗入传感器或在环境中放置更多设备。要验证收到的进程值,不同传感器测量的完整性可以与每个传感器频道测量的时间完整性共同评估。为此目的,我们设计一个安全协议,其中使用卡尔曼过滤器来预测系统状态和频道状态值,而收到的数据则通过假设测试加以验证。我们理论上以两种方式分析假设测试中获得的对抗成功概率和可靠性率,两种方式是他们可能渗入传感器或将更多设备放置在环境中。为了验证所收到的过程值,不同传感器的测量完整性可以与每个传感器的频道测量时间完整性时间完整性一同评估。为此,我们设计了一个安全协议,Kalman过滤器用于预测系统最弱的临界值,一个固定的临界值用来显示一个固定的临界值,一个固定的临界值,一个固定的临界值用来显示一个固定的临界值,一个固定的临界值,一个固定的临界值,一个固定的临界值用于显示一个固定的临界值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员