One of the common ways children learn is by mimicking adults. Imitation learning focuses on learning policies with suitable performance from demonstrations generated by an expert, with an unspecified performance measure, and unobserved reward signal. Popular methods for imitation learning start by either directly mimicking the behavior policy of an expert (behavior cloning) or by learning a reward function that prioritizes observed expert trajectories (inverse reinforcement learning). However, these methods rely on the assumption that covariates used by the expert to determine her/his actions are fully observed. In this paper, we relax this assumption and study imitation learning when sensory inputs of the learner and the expert differ. First, we provide a non-parametric, graphical criterion that is complete (both necessary and sufficient) for determining the feasibility of imitation from the combinations of demonstration data and qualitative assumptions about the underlying environment, represented in the form of a causal model. We then show that when such a criterion does not hold, imitation could still be feasible by exploiting quantitative knowledge of the expert trajectories. Finally, we develop an efficient procedure for learning the imitating policy from experts' trajectories.


翻译:儿童学习的常见方法之一是模仿成人。 模仿学习侧重于学习政策,通过专家制作的演示品产生适当的性能,有未具体说明的性能计量,以及没有观测到的奖赏信号。 模仿学习的流行方法要么直接模仿专家的行为政策(行为克隆),要么学习一种奖励功能,将观察到的专家轨迹(反强化学习)列为优先。然而,这些方法所依赖的假设是,专家用来确定她/他的行动的同系异性得到完全遵守。 在本文中,当学习者与专家的感官投入不同时,我们放松这一假设并研究模仿学习。 首先,我们提供了一种非参数性的图形标准,该标准(既必要又充分)用来确定模拟数据与基本环境的质量假设相结合(以因果关系模型的形式表示)的可行性。 我们然后表明,如果这种标准不成立,那么通过利用专家轨迹的定量知识,模仿仍然可行。 最后,我们制定了一种从专家的轨迹中学习模仿政策的高效程序。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
158+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员