In this paper, we introduce a new method for querying triadic concepts through partial or complete matching of triples using an inverted index, to retrieve already computed triadic concepts that contain a set of terms in their extent, intent, and/or modus. As opposed to the approximation approach described in Ananias, this method (i) does not need to keep the initial triadic context or its three dyadic counterparts, (ii) avoids the application of derivation operators on the triple components through context exploration, and (iii) eliminates the requirement for a factorization phase to get triadic concepts as the answer to one-dimensional queries. Additionally, our solution introduces a novel metric for ranking the retrieved triadic concepts based on their similarity to a given query. Lastly, an empirical study is primarily done to illustrate the effectiveness and scalability of our approach against the approximation one. Our solution not only showcases superior efficiency, but also highlights a better scalability, making it suitable for big data scenarios.
翻译:暂无翻译