We consider the problem of estimating preferences of human agents from data of strategic systems where the agents repeatedly interact. Recently, it was demonstrated that a new estimation method called "quantal regret" produces more accurate estimates for human agents than the classic approach that assumes that agents are rational and reach a Nash equilibrium; however, this method has not been compared to methods that take into account behavioral aspects of human play. In this paper we leverage equilibrium concepts from behavioral economics for this purpose and ask how well they perform compared to the quantal regret and Nash equilibrium methods. We develop four estimation methods based on established behavioral equilibrium models to infer the utilities of human agents from observed data of normal-form games. The equilibrium models we study are quantal-response equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, and impulse-balance equilibrium. We show that in some of these concepts the inference is achieved analytically via closed formulas, while in the others the inference is achieved only algorithmically. We use experimental data of 2x2 games to evaluate the estimation success of these behavioral equilibrium methods. The results show that the estimates they produce are more accurate than the estimates of the Nash equilibrium. The comparison with the quantal-regret method shows that the behavioral methods have better hit rates, but the quantal-regret method performs better in terms of the overall mean squared error, and we discuss the differences between the methods.


翻译:我们考虑了从代理人反复互动的战略系统数据中估算人类代理人偏好的问题。最近,有证据表明,一种称为“横向遗憾”的新估计方法对人体代理人的预测比假定物剂是理性的并达到纳什平衡的经典方法更准确;然而,我们没有将这种方法与考虑到人类游戏行为方面的方法进行比较。在本文件中,我们利用行为经济学中平衡概念来利用该目的,并询问它们与孔氏遗憾和纳什平衡方法相比的表现如何。我们根据既定的行为平衡模型开发了四种估计方法,从正常形式游戏的观测数据中推断人类代理人的效用。我们研究的平衡模型是量-反应平衡、行动抽样平衡、报酬抽样平衡以及冲动平衡。我们表明,在其中一些概念中,通过封闭公式分析得出平衡概念,而在其他概念中,只能得出逻辑推论的推论。我们使用2x2游戏的实验数据来评估这些行为平衡方法的预期成功程度。我们研究的平衡模型显示,它们得出的估计值比平方方法的比方平方方法的推算法要更准确。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员