Objects could often have multiple probable poses in single-shot measurements due to symmetry, occlusion or perceptual failures. A robust object-level simultaneous localization and mapping (object SLAM) algorithm needs to be aware of the pose ambiguity. We propose to maintain and subsequently dis-ambiguate the multiple pose interpretations to gradually recover a globally consistent world representation. The max-mixtures model is applied to implicitly and efficiently track all pose hypotheses. The temporally consistent hypotheses are extracted to guide the optimization solution into the global optimum. This consensus-informed inference method is implemented on top of the incremental SLAM framework iSAM2, via landmark variable re-initialization.
翻译:由于对称性、隔离性或感知性失灵,物体在单发测量中往往可能具有多重可能性。 强大的物体级同步定位和映射算法( 对象级 SLAM) 需要了解这种模糊性。 我们提议保持并随后分离多重构成解释,以逐渐恢复全球一致的世界代表性。 最大混合模型用于隐含和有效地跟踪所有构成假设的假设。 提取时间一致性假设, 引导优化解决方案实现全球最佳化。 这种协商一致知情推论方法在递增的 SLAM 框架 iSAM2 上, 通过里程碑变量的重新设定实施 。