It is known that unsupervised nonlinear dimensionality reduction and clustering is sensitive to the selection of hyperparameters, particularly for deep learning based methods, which hinder its practical use. How to select a proper network structure that may be dramatically different in different applications is a hard issue for deep models, given little prior knowledge of data. In this paper, we explore ensemble learning and selection techniques for automatically determining the optimal network structure of a deep model, named multilayer bootstrap networks (MBN). Specifically, we first propose an MBN ensemble (MBN-E) algorithm which concatenates the sparse outputs of a set of MBN base models with different network structures into a new representation. Because training an ensemble of MBN is expensive, we propose a fast version of MBN-E (fMBN-E), which replaces the step of random data resampling in MBN-E by the resampling of random similarity scores. Theoretically, fMBN-E is even faster than a single standard MBN. Then, we take the new representation produced by MBN-E as a reference for selecting the optimal MBN base models. Two kinds of ensemble selection criteria, named optimization-like selection criteria and distribution divergence criteria, are applied. Importantly, MBN-E and its ensemble selection techniques maintain the simple formulation of MBN that is based on one-nearest-neighbor learning, and reach the state-of-the-art performance without manual hyperparameter tuning. fMBN-E is empirically even hundreds of times faster than MBN-E without suffering performance degradation. The source code is available at http://www.xiaolei-zhang.net/mbn-e.htm.


翻译:众所周知, 未经监督的非线性维度的减少和集群对于选择超参数非常敏感, 特别是对于深学习方法而言, 这阻碍了它的实际使用。 如何选择在不同应用中可能截然不同的适当网络结构对于深层模型来说是一个棘手的问题, 因为之前对数据知之甚少。 在本文中, 我们探索混合学习和选择技术, 以自动确定深模型的最佳网络结构, 名为多层靴套网( MBN) 。 具体地说, 我们首先提议 MBN 混合计算( MBN- E) 算法, 将一组MBN基础模型的零散产出与不同的网络结构混为一体。 由于培训一个在不同的应用 MBNB 的集合是昂贵的, 我们提议一个快速版本的 MBN- E (fMN- E), 取代MBN- E 随机的重现版数据, 随机的类似分数。 理论上, FMMBNN- E (M- E) 甚至比一个标准更快。 然后, 我们采用由MBN- E 所生成的新表达的新表达的 mBNE- sest 最高级的 标准, IM- sem- sem- semess mill 标准是用于选择一个以最优的IM IMLIL 标准。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
3+阅读 · 2020年2月5日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员