We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant $L$ under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory.
翻译:我们研究了在 uclidean 空间的高维多重包装问题。 多重包装是球体包装的自然一般化, 定义如下。 请用 $ > 0 和 $ mathbb ⁇ ge2 $ 。 多个包装是一套 $\ mathbb{C} $ 的点数, 以 $\ mathbb{R ⁇ n $ 表示, 任何点值在半径 $\ sqrt{n} 美元 圆圆点的交叉点上, 以 $\ mathcal{C} $ 。 基于与编码理论的众所周知的关联, 多个包装可以被视为 列表分数代码的 Euclidean 类比值, 以 $ mathbb{C} = $ 美元为单位。 在本文中, 我们从一个称为平均- radis 多重包装的更强的概念下, 以恒定的 $L$ 最已知的最小的星座的最佳密度 。 我们从中得出最著名的小的下界线 。