The sub-packetization $\ell$ and the field size $q$ are of paramount importance in the MSR array code constructions. For optimal-access MSR codes, Balaji et al. proved that $\ell\geq s^{\left\lceil n/s \right\rceil}$, where $s = d-k+1$. Rawat et al. showed that this lower bound is attainable for all admissible values of $d$ when the field size is exponential in $n$. After that, tremendous efforts have been devoted to reducing the field size. However, till now, reduction to linear field size is only available for $d\in\{k+1,k+2,k+3\}$ and $d=n-1$. In this paper, we construct the first class of explicit optimal-access MSR codes with the smallest sub-packetization $\ell = s^{\left\lceil n/s \right\rceil}$ for all $d$ between $k+1$ and $n-1$, resolving an open problem in the survey (Ramkumar et al., Foundations and Trends in Communications and Information Theory: Vol. 19: No. 4). We further propose another class of explicit MSR code constructions (not optimal-access) with even smaller sub-packetization $s^{\left\lceil n/(s+1)\right\rceil }$ for all admissible values of $d$, making significant progress on another open problem in the survey. Previously, MSR codes with $\ell=s^{\left\lceil n/(s+1)\right\rceil }$ and $q=O(n)$ were only known for $d=k+1$ and $d=n-1$. The key insight that enables a linear field size in our construction is to reduce $\binom{n}{r}$ global constraints of non-vanishing determinants to $O_s(n)$ local ones, which is achieved by carefully designing the parity check matrices.
翻译:子分组大小$l$和域大小$q$对MSR数组编码的构建至关重要。针对最优访问MSR编码,Balaji等人证明了$l\geq s^{\left\lceil n/s \right\rceil}$,其中$s=d-k+1$。Rawat等人表明,在域大小为$n$的指数时能够实现所有合适的$d$值。此后,人们花费大量精力来减小域大小。但直到现在,仅当$d\in\{k+1,k+2,k+3\}$和$d=n-1$时,才能将域大小缩小到线性。在本文中,我们构造了第一类显式的最优访问MSR编码,对于所有$k+1$到$n-1$之间的$d$值具有最小子分组大小$\ell = s^{\left\lceil n/s \right\rceil}$,从而解决了Ramkumar等人在调查中的一个未解决的问题。我们更进一步提出另一类显式的MSR编码构造(不是最优访问),对所有合适的$d$值都具有更小的子分组大小$s^{\left\lceil n/(s+1)\right\rceil }$,从而在调查中取得了另一项重大进展。以前,仅在$d=k+1$和$d=n-1$时,已知具有$\ell=s^{\left\lceil n/(s+1)\right\rceil }$和$q= O(n)$的MSR编码。使线性域大小成为我们构建的关键洞察力,该洞察力是将$\binom{n}{r}$个非零行列式的全局约束条件减少到$O_s(n)$个本地约束条件,通过仔细设计奇偶校验矩阵实现的。