The sub-packetization $\ell$ and the field size $q$ are of paramount importance in the MSR array code constructions. For optimal-access MSR codes, Balaji et al. proved that $\ell\geq s^{\left\lceil n/s \right\rceil}$, where $s = d-k+1$. Rawat et al. showed that this lower bound is attainable for all admissible values of $d$ when the field size is exponential in $n$. After that, tremendous efforts have been devoted to reducing the field size. However, till now, reduction to linear field size is only available for $d\in\{k+1,k+2,k+3\}$ and $d=n-1$. In this paper, we construct the first class of explicit optimal-access MSR codes with the smallest sub-packetization $\ell = s^{\left\lceil n/s \right\rceil}$ for all $d$ between $k+1$ and $n-1$, resolving an open problem in the survey (Ramkumar et al., Foundations and Trends in Communications and Information Theory: Vol. 19: No. 4). We further propose another class of explicit MSR code constructions (not optimal-access) with even smaller sub-packetization $s^{\left\lceil n/(s+1)\right\rceil }$ for all admissible values of $d$, making significant progress on another open problem in the survey. Previously, MSR codes with $\ell=s^{\left\lceil n/(s+1)\right\rceil }$ and $q=O(n)$ were only known for $d=k+1$ and $d=n-1$. The key insight that enables a linear field size in our construction is to reduce $\binom{n}{r}$ global constraints of non-vanishing determinants to $O_s(n)$ local ones, which is achieved by carefully designing the parity check matrices.


翻译:子分组大小$l$和域大小$q$对MSR数组编码的构建至关重要。针对最优访问MSR编码,Balaji等人证明了$l\geq s^{\left\lceil n/s \right\rceil}$,其中$s=d-k+1$。Rawat等人表明,在域大小为$n$的指数时能够实现所有合适的$d$值。此后,人们花费大量精力来减小域大小。但直到现在,仅当$d\in\{k+1,k+2,k+3\}$和$d=n-1$时,才能将域大小缩小到线性。在本文中,我们构造了第一类显式的最优访问MSR编码,对于所有$k+1$到$n-1$之间的$d$值具有最小子分组大小$\ell = s^{\left\lceil n/s \right\rceil}$,从而解决了Ramkumar等人在调查中的一个未解决的问题。我们更进一步提出另一类显式的MSR编码构造(不是最优访问),对所有合适的$d$值都具有更小的子分组大小$s^{\left\lceil n/(s+1)\right\rceil }$,从而在调查中取得了另一项重大进展。以前,仅在$d=k+1$和$d=n-1$时,已知具有$\ell=s^{\left\lceil n/(s+1)\right\rceil }$和$q= O(n)$的MSR编码。使线性域大小成为我们构建的关键洞察力,该洞察力是将$\binom{n}{r}$个非零行列式的全局约束条件减少到$O_s(n)$个本地约束条件,通过仔细设计奇偶校验矩阵实现的。

0
下载
关闭预览

相关内容

挖掘软件存储库(MSR)会议分析软件存储库中可用的丰富数据,以发现有关软件系统和项目的有趣和可操作的信息。官网链接:http://www.msrconf.org/
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
38+阅读 · 2021年8月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【Code】GraphSAGE 源码解析
AINLP
30+阅读 · 2020年6月22日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关资讯
【Code】GraphSAGE 源码解析
AINLP
30+阅读 · 2020年6月22日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员