Hallucination in Natural Language Generation (NLG) is like the elephant in the room, obvious but often overlooked until recent achievements significantly improved the fluency and grammatical accuracy of generated text. For Large Language Models (LLMs), hallucinations can happen in various downstream tasks and casual conversations, which need accurate assessment to enhance reliability and safety. However, current studies on hallucination evaluation vary greatly, and people still find it difficult to sort out and select the most appropriate evaluation methods. Moreover, as NLP research gradually shifts to the domain of LLMs, it brings new challenges to this direction. This paper provides a comprehensive survey on the evolvement of hallucination evaluation methods, aiming to address three key aspects: 1) Diverse definitions and granularity of facts; 2) The categories of automatic evaluators and their applicability; 3) Unresolved issues and future directions.
翻译:暂无翻译