In this paper, we are interested in unsupervised (unknown noise) audio-visual speech enhancement based on variational autoencoders (VAEs), where the probability distribution of clean speech spectra is simulated using an encoder-decoder architecture. The trained generative model (decoder) is then combined with a noise model at test time to estimate the clean speech. In the speech enhancement phase (test time), the initialization of the latent variables, which describe the generative process of clean speech via decoder, is crucial, as the overall inference problem is non-convex. This is usually done by using the output of the trained encoder where the noisy audio and clean visual data are given as input. Current audio-visual VAE models do not provide an effective initialization because the two modalities are tightly coupled (concatenated) in the associated architectures. To overcome this issue, inspired by mixture models, we introduce the mixture of inference networks variational autoencoder (MIN-VAE). Two encoder networks input, respectively, audio and visual data, and the posterior of the latent variables is modeled as a mixture of two Gaussian distributions output from each encoder network. The mixture variable is also latent, and therefore the inference of learning the optimal balance between the audio and visual inference networks is unsupervised as well. By training a shared decoder, the overall network learns to adaptively fuse the two modalities. Moreover, at test time, the visual encoder, which takes (clean) visual data, is used for initialization. A variational inference approach is derived to train the proposed generative model. Thanks to the novel inference procedure and the robust initialization, the proposed MIN-VAE exhibits superior performance on speech enhancement than using the standard audio-only as well as audio-visual counterparts.


翻译:在本文中,我们感兴趣的是基于变异自动读取器(VAEs)的未经监督(未知噪音)的视听语音增强,其基础是变异自动读取器(VAEs),清洁语音光谱的概率分布通常是通过一个编码解码器结构模拟的。经过培训的基因化模型(Decoder)随后与测试时的噪音模型结合,以估计干净的言语。在语音增强阶段(测试时间),潜在变量的初始化至关重要,它描述了通过解码器进行清洁语音变异过程的基因化过程,因为总体推断问题是非convex。这通常是通过使用经过培训的视觉解析器的编码模式的输出来完成的。当前视听VAEE模型没有提供有效的初始化模型,在相关结构中,两种声音变异变码网络的高级变异性(Order)是模拟变现的变现模型,因此,变现的变现的变现变现数据是预变现模型中的变现变现。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Phase-aware Speech Enhancement with Deep Complex U-Net
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员