As complex autonomous robotic systems become more widespread, the need for transparent and reusable Artificial Intelligence (AI) designs becomes more apparent. In this paper we analyse how the principles behind Behavior Trees (BTs), an increasingly popular tree-structured control architecture, are applicable to these goals. Using structured programming as a guide, we analyse the BT principles of reactiveness and modularity in a formal framework of action selection. Proceeding from these principles, we review a number of challenging use cases of BTs in the literature, and show that reasoning via these principles leads to compatible solutions. Extending these arguments, we introduce a new class of control architectures we call generalised BTs or $k$-BTs and show how they can extend the applicability of BTs to some of the aforementioned challenging BT use cases while preserving the BT principles.
翻译:随着复杂的自主机器人系统日益普遍,对透明和可再利用的人工智能设计的需求变得更加明显。本文分析行为树背后的原则如何适用于这些目标。我们利用结构化的编程作为指南,在正式的行动选择框架内分析反应性和模块化的BT原则。从这些原则出发,我们审查文献中一些具有挑战性的BT使用案例,并表明通过这些原则推理可以找到兼容的解决办法。我们提出这些论点,我们引入了一种新的控制结构,我们称之为通用的BT或$k$-BT, 并展示它们如何能够在维护BT原则的同时,将BT的应用扩大到上述一些挑战性BT使用案例。