Statistical solutions, which are time-parameterized probability measures on spaces of square-integrable functions, have been established as a suitable framework for global solutions of incompressible Navier-Stokes equations (NSE). We compute numerical approximations of statistical solutions of NSE on two-dimensional domains with non-periodic boundary conditions and empirically investigate the convergence of these approximations and their observables. For the numerical solver, we use Monte Carlo sampling with an H(div)-FEM based deterministic solver. Our numerical experiments for high Reynolds number turbulent flows demonstrate that the statistics and observables of the approximations converge. We also develop a novel algorithm to compute structure functions on unstructured meshes.
翻译:统计解决方案是用时间参数衡量可成形功能空间的概率尺度,现已确立为不可压缩的纳维尔-斯托克斯方程式(NSE)全球解决方案的合适框架。我们计算非定期边界条件的二维域的NSE统计解决方案数字近似值,并用经验调查这些近似值及其可观测值的趋同情况。对于数字求解器,我们使用蒙特卡洛取样法和一个基于H(div)-FEM的确定性解答器。我们对Rynolds数量众多的动荡流进行的数字实验表明,近似值的统计和可观测值汇合。我们还开发了一种新型算法,用以计算非结构型贝壳的结构功能。