The random splitting Langevin Monte Carlo could mitigate the first order bias in Langevin Monte Carlo with little extra work compared other high order schemes. We develop in this work an analysis framework for the sampling error under Wasserstein distance regarding the random splitting Langevin Monte Carlo. First, the sharp local truncation error is obtained by the relative entropy approach together with the explicit formulas for the commutator of related semi-groups. The necessary pointwise estimates of the gradient and Hessian of the logarithmic density are established by the Bernstein type approach in PDE theory. Second, the geometric ergodicity is established by accommodation of the reflection coupling. Combining the ergodicity with the local error estimate, we establish a uniform-in-time sampling error bound, showing that the invariant measure of the method approximates the true Gibbs distribution with $O(\tau^2)$ accuracy where $\tau$ is the time step. Lastly, we perform numerical experiments to validate the theoretical results.
翻译:相较于其他高阶方案,随机分裂朗之万蒙特卡洛能以极少的额外计算代价缓解朗之万蒙特卡洛中的一阶偏差。本文针对随机分裂朗之万蒙特卡洛方法,建立了关于Wasserstein距离的采样误差分析框架。首先,通过相对熵方法结合相关半群交换子的显式公式,获得了精确的局部截断误差。对数密度梯度和Hessian矩阵所需的逐点估计则通过PDE理论中的Bernstein型方法建立。其次,通过采用反射耦合方法证明了该算法的几何遍历性。将遍历性与局部误差估计相结合,我们建立了与时间无关的均匀采样误差界,表明该方法的稳态测度以$O(\tau^2)$精度逼近真实的吉布斯分布,其中$\tau$为时间步长。最后,我们通过数值实验验证了理论结果。